首页> 外文OA文献 >Region-based Mixture of Gaussians Modelling for Foreground Detection in Dynamic Scenes
【2h】

Region-based Mixture of Gaussians Modelling for Foreground Detection in Dynamic Scenes

机译:基于高斯模型的区域混合动态场景中的前景检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most widely used techniques in computer vision for foreground detection is to model each background pixel as a Mixture of Gaussians (MoG). While this is effective for a static camera with a fixed or a slowly varying background, it fails to handle any fast, dynamic movement in the background. In this paper, we propose a generalised framework, called region-based MoG (RMoG), that takes into consideration neighbouring pixels while generating the model of the observed scene. The model equations are derived from Expectation Maximisation theory for batch mode, and stochastic approximation is used for online mode updates. We evaluate our region-based approach against ten sequences containing dynamic backgrounds, and show that the region-based approach provides a performance improvement over the traditional single pixel MoG. For feature and region sizes that are equal, the effect of increasing the learning rate is to reduce both true and false positives. Comparison with four state-of-the art approaches shows that RMoG outperforms the others in reducing false positives whilst still maintaining reasonable foreground definition. Lastly, using the ChangeDetection (CDNet 2014) benchmark, we evaluated RMoG against numerous surveillance scenes and found it to amongst the leading performers for dynamic background scenes, whilst providing comparable performance for other commonly occurring surveillance scenes.
机译:在计算机视觉中用于前景检测的最广泛使用的技术之一是将每个背景像素建模为高斯混合(MoG)。虽然这对于背景固定或缓慢变化的静态相机很有效,但它无法处理背景中的任何快速动态运动。在本文中,我们提出了一个通用的框架,称为基于区域的MoG(RMoG),该框架在生成观察场景的模型时会考虑相邻像素。模型方程式是从“期望最大化”理论中导出的,用于批处理模式,并且随机近似用于在线模式更新。我们针对包含动态背景的十个序列评估了我们的基于区域的方法,并表明基于区域的方法比传统的单像素MoG可以提供更好的性能。对于相等的特征和区域大小,提高学习率的作用是减少正确和错误肯定。与四种最新方法的比较表明,在降低误报率的同时仍保持合理的前景定义,RMoG优于其他方法。最后,我们使用ChangeDetection(CDNet 2014)基准,针对众多监视场景对RMoG进行了评估,发现它在动态背景场景中表现出色,同时可以为其他常见监视场景提供可比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号